Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Viruses ; 15(5)2023 05 22.
Article in English | MEDLINE | ID: covidwho-20245260

ABSTRACT

Infectious bronchitis virus (IBV) belongs to the gamma-coronavirus genus of Coronaviridae and causes serious infectious diseases in the poultry industry. However, only a few IBV strains can infect avian passage cell lines, seriously hindering the progress of basic research on IBV pathogenesis. Whereas IBV field strains can replicate in tracheal ring organ culture (TOC) without any previous adaptation in chicken embryos or primary cells. In this study, to investigate the potential use of TOC as an in vitro infection model for the study of IBV-host interaction, we first established a chicken embryo TOC culture system and carried out an investigation on the IBV replication kinetics in the system. We found that the selected strains of the IBV GI-1, GI-7, GI-13, GI-19, and GI-22 genotypes could successfully replicate in TOC and bring about damage to the infected trachea. Next, we identified host proteins of the chicken embryo trachea that interact with the IBV S1 protein by immunoprecipitation and protein mass spectrometry. A total of 127 candidate proteins were initially identified with major involvement in cell adhesion pathways and apoptosis- and autophagy-related pathways. The heat shock protein 70 (HSP70) was selected for further investigation in the interaction with IBV viral proteins. Our results showed that HSP70 interacted with IBV S1 in both TOC and CEK cells, whereas HSP70 overexpression inhibited viral replication. This study indicates that TOC is a good system for the elucidation of IBV-host interactions and HSP70 is a potential host antiviral factor.


Subject(s)
Coronavirus Infections , Infectious bronchitis virus , Poultry Diseases , Animals , Chick Embryo , Infectious bronchitis virus/genetics , Organ Culture Techniques , Trachea , Chickens , Cell Line , Coronavirus Infections/veterinary
2.
Cell Mol Life Sci ; 80(6): 153, 2023 May 17.
Article in English | MEDLINE | ID: covidwho-2328394

ABSTRACT

Accumulating evidence has consolidated the interaction between viral infection and host alternative splicing. Serine-arginine (SR) proteins are a class of highly conserved splicing factors critical for the spliceosome maturation, alternative splicing and RNA metabolism. Serine-arginine protein kinases (SRPKs) are important kinases that specifically phosphorylate SR proteins to regulate their distribution and activities in the central pre-mRNA splicing and other cellular processes. In addition to the predominant SR proteins, other cytoplasmic proteins containing a serine-arginine repeat domain, including viral proteins, have been identified as substrates of SRPKs. Viral infection triggers a myriad of cellular events in the host and it is therefore not surprising that viruses explore SRPKs-mediated phosphorylation as an important regulatory node in virus-host interactions. In this review, we briefly summarize the regulation and biological function of SRPKs, highlighting their involvement in the infection process of several viruses, such as viral replication, transcription and capsid assembly. In addition, we review the structure-function relationships of currently available inhibitors of SRPKs and discuss their putative use as antivirals against well-characterized viruses or newly emerging viruses. We also highlight the viral proteins and cellular substrates targeted by SRPKs as potential antiviral therapeutic candidates.


Subject(s)
Protein Kinases , Virus Diseases , Humans , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , Arginine/metabolism , Serine/metabolism , Phosphorylation , RNA Splicing , Alternative Splicing , Viral Proteins/genetics , Virus Diseases/drug therapy , Serine-Arginine Splicing Factors/metabolism
3.
Mol Cell Proteomics ; 22(7): 100579, 2023 May 20.
Article in English | MEDLINE | ID: covidwho-2324953

ABSTRACT

There is still much to uncover regarding the molecular details of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. As the most abundant protein, coronavirus nucleocapsid (N) protein encapsidates viral RNAs, serving as the structural component of ribonucleoprotein and virion, and participates in transcription, replication, and host regulations. Virus-host interaction might give clues to better understand how the virus affects or is affected by its host during infection and identify promising therapeutic candidates. Considering the critical roles of N, we here established a new cellular interactome of SARS-CoV-2 N by using a high-specific affinity purification (S-pulldown) assay coupled with quantitative mass spectrometry and immunoblotting validations, uncovering many N-interacting host proteins unreported previously. Bioinformatics analysis revealed that these host factors are mainly involved in translation regulations, viral transcription, RNA processes, stress responses, protein folding and modification, and inflammatory/immune signaling pathways, in line with the supposed actions of N in viral infection. Existing pharmacological cellular targets and the directing drugs were then mined, generating a drug-host protein network. Accordingly, we experimentally identified several small-molecule compounds as novel inhibitors against SARS-CoV-2 replication. Furthermore, a newly identified host factor, DDX1, was verified to interact and colocalize with N mainly by binding to the N-terminal domain of the viral protein. Importantly, loss/gain/reconstitution-of-function experiments showed that DDX1 acts as a potent anti-SARS-CoV-2 host factor, inhibiting the viral replication and protein expression. The N-targeting and anti-SARS-CoV-2 abilities of DDX1 are consistently independent of its ATPase/helicase activity. Further mechanism studies revealed that DDX1 impedes multiple activities of N, including the N-N interaction, N oligomerization, and N-viral RNA binding, thus likely inhibiting viral propagation. These data provide new clues to better depiction of the N-cell interactions and SARS-CoV-2 infection and may help inform the development of new therapeutic candidates.

5.
mBio ; 14(3): e0347822, 2023 06 27.
Article in English | MEDLINE | ID: covidwho-2314960

ABSTRACT

Apobec3A is involved in the antiviral host defense, targeting nuclear DNA, introducing point mutations, and thereby activating DNA damage response (DDR). Here, we found a significant upregulation of Apobec3A during HAdV infection, including Apobec3A protein stabilization mediated by the viral proteins E1B-55K and E4orf6, which subsequently limited HAdV replication and most likely involved a deaminase-dependent mechanism. The transient silencing of Apobec3A enhanced adenoviral replication. HAdV triggered Apobec3A dimer formation and enhanced activity to repress the virus. Apobec3A decreased E2A SUMOylation and interfered with viral replication centers. A comparative sequence analysis revealed that HAdV types A, C, and F may have evolved a strategy to escape Apobec3A-mediated deamination via reduced frequencies of TC dinucleotides within the viral genome. Although viral components induce major changes within infected cells to support lytic life cycles, our findings demonstrate that host Apobec3A-mediated restriction limits virus replication, albeit that HAdV may have evolved to escape this restriction. This allows for novel insights into the HAdV/host-cell interplay, which broaden the current view of how a host cell can limit HAdV infection. IMPORTANCE Our data provide a novel conceptual insight into the virus/host-cell interplay, changing the current view of how a host-cell can defeat a virus infection. Thus, our study reveals a novel and general impact of cellular Apobec3A on the intervention of human adenovirus (HAdV) gene expression and replication by improving the host antiviral defense mechanisms, thereby providing a novel basis for innovative antiviral strategies in future therapeutic settings. Ongoing investigations of the cellular pathways that are modulated by HAdV are of great interest, particularly since adenovirus-based vectors actually serve as COVID vaccine vectors and also frequently serve as tools in human gene therapy and oncolytic treatment options. HAdV constitute an ideal model system by which to analyze the transforming capabilities of DNA tumor viruses as well as the underlying molecular principles of virus-induced and cellular tumorigenesis.


Subject(s)
Adenovirus Infections, Human , Adenoviruses, Human , COVID-19 , Humans , Adenoviruses, Human/physiology , Adenoviridae/genetics , Virus Replication , COVID-19 Vaccines , Deamination , Antiviral Agents/metabolism , Gene Expression
6.
Artif Intell Med ; 142: 102574, 2023 08.
Article in English | MEDLINE | ID: covidwho-2310249

ABSTRACT

Protein-protein interaction is one of the ways viruses interact with their hosts. Therefore, identifying protein interactions between viruses and hosts helps explain how virus proteins work, how they replicate, and how they cause disease. SARS-CoV-2 is a new type of virus that emerged from the coronavirus family in 2019 and caused a worldwide pandemic. Detection of human proteins interacting with this novel virus strain plays an important role in monitoring the cellular process of virus-associated infection. Within the scope of the study, a natural language processing-based collective learning method is proposed for the prediction of potential SARS-CoV-2-human PPIs. Protein language models were obtained with the prediction-based word2Vec and doc2Vec embedding methods and the frequency-based tf-idf method. Known interactions were represented by proposed language models and traditional feature extraction methods (conjoint triad and repeat pattern), and their performances were compared. The interaction data were trained with support vector machine, artificial neural network (ANN), k-nearest neighbor (KNN), naive Bayes (NB), decision tree (DT), and ensemble algorithms. Experimental results show that protein language models are a promising protein representation method for protein-protein interaction prediction. The term frequency-inverse document frequency-based language model performed the SARS-CoV-2 protein-protein interaction estimation with an error of 1.4%. Additionally, the decisions of high-performing learning models for different feature extraction methods were combined with a collective voting approach to make new interaction predictions. For 10,000 human proteins, 285 new potential interactions were predicted, with models combining decisions.


Subject(s)
COVID-19 , Protein Interaction Maps , Humans , Bayes Theorem , SARS-CoV-2 , Algorithms
7.
Omics Approaches and Technologies in COVID-19 ; : 145-160, 2022.
Article in English | Scopus | ID: covidwho-2297600

ABSTRACT

Coronavirus disease 2019 or COVID-19 has surfaced as a global disaster eliciting severe respiratory illness, imputable to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since its inception, scientists and researchers have urgently aligned their research for the identification of potential biomarkers for early detection and to develop novel therapeutics for the treatment of COVID-19 infection. MicroRNAs (miRNAs) are known to regulate critical cellular pathways in several human pathologies including viral infections and have surfaced as key modulators in mediating the SARS-CoV-2 pathogenesis as well. The virus-host interactions mediated through miRNAs have been of keen interest to researchers these days. Significant miRNAs have been reported, which might act as potential biomarkers and therapeutic targets. The differential expression of miRNAs in mild and severely affected patients has paved the way for drug development and therapies. The mechanism and understanding the emerging role of miRNA for the virus and infected host cell interplay will contribute to therapeutic prospects and mitigate the burden of such similar viral infections. © 2023 Elsevier Inc. All rights reserved.

8.
Coronaviruses ; 2(8) (no pagination), 2021.
Article in English | EMBASE | ID: covidwho-2251617

ABSTRACT

The emerging new COVID 2019 pandemic, which started in 2019 in China (Wuhan) and is caused by SARS-CoV-2, raises critical concerns due to high morbidity and mortality. As many patients are infected and the numbers still increase, this may suggest that there are different variants of the virus and some of them are more pathogenic. Besides, the virus is suspected to have various evolutionary pathways since SARS-CoV-2 belongs to the RNA viruses' family, which is characterized by a high mutation rate. Additionally, it is crucial to understand the life cycle of the virus to be able to urge antiviral studies. Genotyping studies about viruses are also important in order to understand the transmission and evolution of the virus. The genome of SARS-CoV-2 has a furin-like cleavage site in its S protein that may affect its pathogenicity. It was found that insertions and deletions in S protein have an impact on the transmission and fusion of the virus. The single nucleotide polymorphisms (SNP) genotypes are used to track the relationship of virus isolates. Se-quence alignment revealed the presence of hundreds of inter-host mutations during person-to-per-son transmission. Furthermore, genetic recombination provided a second mechanism for virus evo-lution. In this review, we highlight the life cycle of the virus and methods of virus evolution caused by mutations or recombination of viral genomes.Copyright © 2021 Bentham Science Publishers.

9.
Viruses ; 15(3)2023 02 27.
Article in English | MEDLINE | ID: covidwho-2288062

ABSTRACT

The constantly evolving severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOC) fuel the worldwide coronavirus disease (COVID-19) pandemic. The spike protein is essential for the SARS-CoV-2 viral entry and thus has been extensively targeted by therapeutic antibodies. However, mutations along the spike in SARS-CoV-2 VOC and Omicron subvariants have caused more rapid spread and strong antigenic drifts, rendering most of the current antibodies ineffective. Hence, understanding and targeting the molecular mechanism of spike activation is of great interest in curbing the spread and development of new therapeutic approaches. In this review, we summarize the conserved features of spike-mediated viral entry in various SARS-CoV-2 VOC and highlight the converging proteolytic processes involved in priming and activating the spike. We also summarize the roles of innate immune factors in preventing spike-driven membrane fusion and provide outlines for the identification of novel therapeutics against coronavirus infections.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Immunity, Innate , Spike Glycoprotein, Coronavirus
10.
Comput Struct Biotechnol J ; 21: 1774-1784, 2023.
Article in English | MEDLINE | ID: covidwho-2264156

ABSTRACT

The coronavirus disease-2019 (COVID-19) pandemic has elucidated major limitations in the capacity of medical and research institutions to appropriately manage emerging infectious diseases. We can improve our understanding of infectious diseases by unveiling virus-host interactions through host range prediction and protein-protein interaction prediction. Although many algorithms have been developed to predict virus-host interactions, numerous issues remain to be solved, and the entire network remains veiled. In this review, we comprehensively surveyed algorithms used to predict virus-host interactions. We also discuss the current challenges, such as dataset biases toward highly pathogenic viruses, and the potential solutions. The complete prediction of virus-host interactions remains difficult; however, bioinformatics can contribute to progress in research on infectious diseases and human health.

11.
Microb Risk Anal ; 23: 100250, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2221172

ABSTRACT

RNA viruses exhibit a great tendency to mutate. Mutations occur in the parts of the genome that encode the spike glycoprotein and less often in the rest of the genome. This is why Gibbs energy of binding changes more than that of biosynthesis. Starting from 2019, the wild type that was labeled Hu-1 has during the last 3 years evolved to produce several dozen new variants, as a consequence of mutations. Mutations cause changes in empirical formulas of new virus strains, which lead to change in thermodynamic properties of biosynthesis and binding. These changes cause changes in the rate of reactions of binding of virus antigen to the host cell receptor and the rate of virus multiplication in the host cell. Changes in thermodynamic and kinetic parameters lead to changes in biological parameters of infectivity and pathogenicity. Since the beginning of the COVID-19 pandemic, SARS-CoV-2 has been evolving towards increase in infectivity and maintaining constant pathogenicity, or for some variants a slight decrease in pathogenicity. In the case of Omicron BQ.1, BQ.1.1, XBB and XBB.1 variants pathogenicity is identical as in the Omicron BA.2.75 variant. On the other hand, infectivity of the Omicron BQ.1, BQ.1.1, XBB and XBB.1 variants is greater than those of previous variants. This will most likely result in the phenomenon of asymmetric coinfection, that is circulation of several variants in the population, some being dominant.

12.
Vaccines (Basel) ; 10(12)2022 Dec 09.
Article in English | MEDLINE | ID: covidwho-2155418

ABSTRACT

Biothermodynamics of viruses is among the youngest but most rapidly developing scientific disciplines. During the COVID-19 pandemic, it closely followed the results published by molecular biologists. Empirical formulas were published for 50 viruses and thermodynamic properties for multiple viruses and virus variants, including all variants of concern of SARS-CoV-2, SARS-CoV, MERS-CoV, Ebola virus, Vaccinia and Monkeypox virus. A review of the development of biothermodynamics of viruses during the last several decades and intense development during the last 3 years is described in this paper.

13.
Viruses ; 14(11)2022 Nov 02.
Article in English | MEDLINE | ID: covidwho-2123861

ABSTRACT

The porcine epidemic diarrhea virus (PEDV) is a member of the coronavirus family, causing deadly watery diarrhea in newborn piglets. The global pandemic of PEDV, with significant morbidity and mortality, poses a huge threat to the swine industry. The currently developed vaccines and drugs are only effective against the classic GI strains that were prevalent before 2010, while there is no effective control against the GII variant strains that are currently a global pandemic. In this review, we summarize the latest progress in the biology of PEDV, including its transmission and origin, structure and function, evolution, and virus-host interaction, in an attempt to find the potential virulence factors influencing PEDV pathogenesis. We conclude with the mechanism by which PEDV components antagonize the immune responses of the virus, and the role of host factors in virus infection. Essentially, this review serves as a valuable reference for the development of attenuated virus vaccines and the potential of host factors as antiviral targets for the prevention and control of PEDV infection.


Subject(s)
Coronavirus Infections , Coronavirus , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Swine , Virulence , Host Microbial Interactions , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Vaccines, Attenuated
14.
Front Microbiol ; 13: 975632, 2022.
Article in English | MEDLINE | ID: covidwho-2109796

ABSTRACT

Coronaviruses have long posed a major threat not only to human health but also to agriculture. Outbreaks of an animal coronavirus such as porcine epidemic diarrhea virus (PEDV) can cause up-to-100% mortality in suckling piglets, resulting in devastating effects on the livestock industry. Understanding how the virus evades its host's defense can help us better manage the infection. Zinc-finger antiviral protein (ZAP) is an important class of host antiviral factors against a variety of viruses, including the human coronavirus. In this study, we have shown that a representative porcine coronavirus, PEDV, can be suppressed by endogenous or porcine-cell-derived ZAP in VeroE6 cells. An uneven distribution pattern of CpG dinucleotides in the viral genome is one of the factors contributing to suppression, as an increase in CpG content in the nucleocapsid (N) gene renders the virus more susceptible to ZAP. Our study revealed that the virus uses its own nucleocapsid protein (pCoV-N) to interact with ZAP and counteract the activity of ZAP. The insights into coronavirus-host interactions shown in this work could be used in the design and development of modern vaccines and antiviral agents for the next pandemic.

15.
mBio ; 13(3): e0081522, 2022 06 28.
Article in English | MEDLINE | ID: covidwho-1861583

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) utilizes a number of strategies to modulate viral and host mRNA translation. Here, we used ribosome profiling in SARS-CoV-2-infected model cell lines and primary airway cells grown at an air-liquid interface to gain a deeper understanding of the translationally regulated events in response to virus replication. We found that SARS-CoV-2 mRNAs dominate the cellular mRNA pool but are not more efficiently translated than cellular mRNAs. SARS-CoV-2 utilized a highly efficient ribosomal frameshifting strategy despite notable accumulation of ribosomes within the slippery sequence on the frameshifting element. In a highly permissive cell line model, although SARS-CoV-2 infection induced the transcriptional upregulation of numerous chemokine, cytokine, and interferon-stimulated genes, many of these mRNAs were not translated efficiently. The impact of SARS-CoV-2 on host mRNA translation was more subtle in primary cells, with marked transcriptional and translational upregulation of inflammatory and innate immune responses and downregulation of processes involved in ciliated cell function. Together, these data reveal the key role of mRNA translation in SARS-CoV-2 replication and highlight unique mechanisms for therapeutic development. IMPORTANCE SARS-CoV-2 utilizes a number of strategies to modulate host responses to ensure efficient propagation. Here, we used ribosome profiling in SARS-CoV-2-infected cells to gain a deeper understanding of the translationally regulated events in infected cells. We found that although viral mRNAs are abundantly expressed, they are not more efficiently translated than cellular mRNAs. SARS-CoV-2 utilized a highly efficient ribosomal frameshifting strategy and alternative translation initiation sites that help increase the coding potential of its RNAs. In permissive cells, SARS-CoV-2 infection induced the translational repression of numerous innate immune mediators. Though the impact of SARS-CoV-2 on host mRNA translation was more subtle in primary airway cell cultures, we noted marked transcriptional and translational upregulation of inflammatory and innate immune responses and downregulation of processes involved in ciliated cell function. Together, these data provide new insight into how SARS-CoV-2 modulates innate host responses and highlight unique mechanisms for therapeutic intervention.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/genetics , Humans , Immunity, Innate , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ribosomes/metabolism , SARS-CoV-2/genetics
16.
Translational Biophotonics ; 4(1-2), 2022.
Article in English | ProQuest Central | ID: covidwho-1844252

ABSTRACT

In the last few decades outbreaks of viral infections have often challenged the world‐wide health infrastructure and caused a significant financial burden as well as human suffering despite progress in diagnostic technologies. The recent outbreaks of the Ebola virus in the African continent, the Zika virus in the American continent, severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MN1 -https://media.proquest.com/media/hms/PFT/1/9NKwM?_a=ChgyMDIyMDUxNzE1MjYzMjYwMzoyNzA4NTkSBTg4MjU5GgpPTkVfU0VBUkNIIg4xNTguMTExLjIzNi45NSoHNTA2ODQ5NTIKMjY2NDcwMDU1ODoNRG9jdW1lbnRJbWFnZUIBMFIGT25saW5lWgJGVGIDUEZUagoyMDIyLzAzLzAxcgoyMDIyLzAzLzMxegCCASlQLTEwMDc4NTItMjY3MjQtQ1VTVE9NRVItMTAwMDAyNTUtNTc2NDMxMZIBBk9ubGluZcoBc01vemlsbGEvNS4wIChXaW5kb3dzIE5UIDEwLjA7IFdpbjY0OyB4NjQpIEFwcGxlV2ViS2l0LzUzNy4zNiAoS0hUTUwsIGxpa2UgR2Vja28pIENocm9tZS8xMDEuMC40OTUxLjY0IFNhZmFyaS81MzcuMzbSARJTY2hvbGFybHkgSm91cm5hbHOaAgdQcmVQYWlkqgIrT1M6RU1TLU1lZGlhTGlua3NTZXJ2aWNlLWdldE1lZGlhVXJsRm9ySXRlbcoCD0FydGljbGV8RmVhdHVyZdICAVnyAgD6AgFZggMDV2ViigMcQ0lEOjIwMjIwNTE3MTUyNjMyNjAzOjcyMDg1Ng%3D%3D&_s=kRWbjm7Gq64Rq8ZmQhDgAEQ7U9s%3D ERS), influenza A and lately severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) viral infections have repeatedly highlighted the importance of technological advancement enabling a better understanding of virions. In this review, we systematically discuss different aspects of virions and how their properties and functions can be studied using different light‐based technologies. We focus on virion classification, detection and interactions with the host's immune system. Further, the potential of advanced biophotonic methods, for example, Raman, infrared reflection, absorption and fluorescence spectroscopy, advanced microscopic techniques and biosensor‐based approaches for diagnosing viral infections, investigating therapeutics and vaccine development are described. Although significant advancements have already been made in photonic technologies, which even enable visualizing virion‐host interactions on single‐cell level, the continuous evolution of viruses demands further progress in biophotonic solutions for fast, affordable and robust health monitoring devices for screening viral infections.

17.
Front Microbiol ; 13: 854567, 2022.
Article in English | MEDLINE | ID: covidwho-1771048

ABSTRACT

The ongoing SARS-CoV-2 pandemic has shocked the world due to its persistence, COVID-19-related morbidity and mortality, and the high mutability of the virus. One of the major concerns is the emergence of new viral variants that may increase viral transmission and disease severity. In addition to mutations of spike protein, mutations of viral proteins that affect virulence, such as ORF3a, also must be considered. The purpose of this article is to review the current literature on ORF3a, to summarize the molecular actions of SARS-CoV-2 ORF3a, and its role in viral pathogenesis and COVID-19. ORF3a is a polymorphic, multifunctional viral protein that is specific to SARS-CoV/SARS-CoV-2. It was acquired from ß-CoV lineage and likely originated from bats through viral evolution. SARS-CoV-2 ORF3a is a viroporin that interferes with ion channel activities in host plasma and endomembranes. It is likely a virion-associated protein that exerts its effect on the viral life cycle during viral entry through endocytosis, endomembrane-associated viral transcription and replication, and viral release through exocytosis. ORF3a induces cellular innate and pro-inflammatory immune responses that can trigger a cytokine storm, especially under hypoxic conditions, by activating NLRP3 inflammasomes, HMGB1, and HIF-1α to promote the production of pro-inflammatory cytokines and chemokines. ORF3a induces cell death through apoptosis, necrosis, and pyroptosis, which leads to tissue damage that affects the severity of COVID-19. ORF3a continues to evolve along with spike and other viral proteins to adapt in the human cellular environment. How the emerging ORF3a mutations alter the function of SARS-CoV-2 ORF3a and its role in viral pathogenesis and COVID-19 is largely unknown. This review provides an in-depth analysis of ORF3a protein's structure, origin, evolution, and mutant variants, and how these characteristics affect its functional role in viral pathogenesis and COVID-19.

18.
mBio ; 13(2): e0313521, 2022 04 26.
Article in English | MEDLINE | ID: covidwho-1714354

ABSTRACT

Severe acute respiratory syndrome coronavirus (SARS-CoV) and the closely related SARS-CoV-2 are emergent highly pathogenic human respiratory viruses causing acute lethal disease associated with lung damage and dysregulated inflammatory responses. SARS-CoV envelope protein (E) is a virulence factor involved in the activation of various inflammatory pathways. Here, we study the contribution of host miRNAs to the virulence mediated by E protein. Small RNAseq analysis of infected mouse lungs identified miRNA-223 as a potential regulator of pulmonary inflammation, since it was significantly increased in SARS-CoV-WT virulent infection compared to the attenuated SARS-CoV-ΔE infection. In vivo inhibition of miRNA-223-3p increased mRNA levels of pro-inflammatory cytokines and NLRP3 inflammasome, suggesting that during lung infection, miRNA-223 might contribute to restrict an excessive inflammatory response. Interestingly, miRNA-223-3p inhibition also increased the levels of the CFTR transporter, which is involved in edema resolution and was significantly downregulated in the lungs of mice infected with the virulent SARS-CoV-WT virus. At the histopathological level, a decrease in the pulmonary edema was observed when miR-223-3p was inhibited, suggesting that miRNA-223-3p was involved in the regulation of the SARS-CoV-induced inflammatory pathology. These results indicate that miRNA-223 participates in the regulation of E protein-mediated inflammatory response during SARS-CoV infection by targeting different host mRNAs involved in the pulmonary inflammation, and identify miRNA-223 as a potential therapeutic target in SARS-CoV infection. IMPORTANCE The SARS-CoV-2 pandemic has emphasized the need to understand the mechanisms of severe lung inflammatory pathology caused by human deadly coronaviruses in order to design new antiviral therapies. Here, we identify miRNA-223-3p as a host miRNA involved in the regulation of lung inflammatory response mediated by envelope (E) protein during SARS-CoV infection. miRNAs downregulate the expression of cellular mRNAs and participate in complex networks of mRNA-miRNA interactions that regulate cellular processes. The inhibition of miRNA-223 in infected mice by intranasal administration of antisense RNAs led to changes in the expression of host factors involved in inflammation (cytokines, chemokines, and NLRP3 inflammasome) and in the resolution of lung edema ion transporter CFTR. These results confirmed the contribution of miRNA-223 to the regulation of SARS-CoV-induced pathogenic processes and support the therapeutic potential of inhibiting miRNAs during coronavirus infection using RNA interference approaches.


Subject(s)
COVID-19 , MicroRNAs , Animals , Cystic Fibrosis Transmembrane Conductance Regulator , Cytokines , Inflammasomes , Lung/pathology , Mice , MicroRNAs/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , RNA, Messenger , SARS-CoV-2
19.
Int J Mol Sci ; 23(4)2022 Feb 13.
Article in English | MEDLINE | ID: covidwho-1686819

ABSTRACT

The COVID-19 pandemic has evidenced the urgent need for the discovery of broad-spectrum antiviral therapies that could be deployed in the case of future emergence of novel viral threats, as well as to back up current therapeutic options in the case of drug resistance development. Most current antivirals are directed to inhibit specific viruses since these therapeutic molecules are designed to act on a specific viral target with the objective of interfering with a precise step in the replication cycle. Therefore, antimicrobial peptides (AMPs) have been identified as promising antiviral agents that could help to overcome this limitation and provide compounds able to act on more than a single viral family. We evaluated the antiviral activity of an amphibian peptide known for its strong antimicrobial activity against both Gram-positive and Gram-negative bacteria, namely Temporin L (TL). Previous studies have revealed that TL is endowed with widespread antimicrobial activity and possesses marked haemolytic activity. Therefore, we analyzed TL and a previously identified TL derivative (Pro3, DLeu9 TL, where glutamine at position 3 is replaced with proline, and the D-Leucine enantiomer is present at position 9) as well as its analogs, for their activity against a wide panel of viruses comprising enveloped, naked, DNA and RNA viruses. We report significant inhibition activity against herpesviruses, paramyxoviruses, influenza virus and coronaviruses, including SARS-CoV-2. Moreover, we further modified our best candidate by lipidation and demonstrated a highly reduced cytotoxicity with improved antiviral effect. Our results show a potent and selective antiviral activity of TL peptides, indicating that the novel lipidated temporin-based antiviral agents could prove to be useful additions to current drugs in combatting rising drug resistance and epidemic/pandemic emergencies.


Subject(s)
Amphibian Proteins/pharmacology , Amphibians/metabolism , Antimicrobial Cationic Peptides/pharmacology , Antiviral Agents/chemistry , DNA Viruses/drug effects , RNA Viruses/drug effects , Amino Acid Sequence , Amphibian Proteins/chemistry , Amphibian Proteins/metabolism , Animals , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/metabolism , Antiviral Agents/pharmacology , Cell Survival/drug effects , Chlorocebus aethiops , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Humans , Lipids/chemistry , SARS-CoV-2/drug effects , Vero Cells
20.
Virol J ; 18(1): 257, 2021 12 27.
Article in English | MEDLINE | ID: covidwho-1639183

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein determines virus entry and the palmitoylation of S protein affects virus infection. An acyltransferase complex ZDHHC5/GOGAL7 that interacts with S protein was detected by affinity purification mass spectrometry (AP-MS). However, the palmitoylated cysteine residues of S protein, the effects of ZDHHC5 or GOLGA7 knockout on S protein's subcellular localization, palmitoylation, pseudovirus entry and the enzyme for depalmitoylation of S protein are not clear. METHODS: The palmitoylated cysteine residues of S protein were identified by acyl-biotin exchange (ABE) assays. The interactions between S protein and host proteins were analyzed by co-immunoprecipitation (co-IP) assays. Subcellular localizations of S protein and host proteins were analyzed by fluorescence microscopy. ZDHHC5 or GOGAL7 gene was edited by CRISPR-Cas9. The entry efficiencies of SARS-CoV-2 pseudovirus into A549 and Hela cells were analyzed by measuring the activity of Renilla luciferase. RESULTS: In this investigation, all ten cysteine residues in the endodomain of S protein were palmitoylated. The interaction of S protein with ZDHHC5 or GOLGA7 was confirmed. The interaction and colocalization of S protein with ZDHHC5 or GOLGA7 were independent of the ten cysteine residues in the endodomain of S protein. The interaction between S protein and ZDHHC5 was independent of the enzymatic activity and the PDZ-binding domain of ZDHHC5. Three cell lines HEK293T, A549 and Hela lacking ZDHHC5 or GOLGA7 were constructed. Furthermore, S proteins still interacted with one host protein in HEK293T cells lacking the other. ZDHHC5 or GOLGA7 knockout had no significant effect on S protein's subcellular localization or palmitoylation, but significantly decreased the entry efficiencies of SARS-CoV-2 pseudovirus into A549 and Hela cells, while varying degrees of entry efficiencies may be linked to the cell types. Additionally, the S protein interacted with the depalmitoylase APT2. CONCLUSIONS: ZDHHC5 and GOLGA7 played important roles in SARS-CoV-2 pseudovirus entry, but the reason why the two host proteins affected pseudovirus entry remains to be further explored. This study extends the knowledge about the interactions between SARS-CoV-2 S protein and host proteins and probably provides a reference for the corresponding antiviral methods.


Subject(s)
Acyltransferases , COVID-19 , Golgi Matrix Proteins/metabolism , Lipoylation , Spike Glycoprotein, Coronavirus , Cysteine , Golgi Matrix Proteins/genetics , HEK293 Cells , HeLa Cells , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL